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Topology optimization of �uids in Stokes �ow
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SUMMARY

We consider topology optimization of �uids in Stokes �ow. The design objective is to minimize a power
function, which for the absence of body �uid forces is the dissipated power in the �uid, subject to a
�uid volume constraint. A generalized Stokes problem is derived that is used as a base for introducing
the design parameterization. Mathematical proofs of existence of optimal solutions and convergence of
discretized solutions are given and it is concluded that no regularization of the optimization problem
is needed. The discretized state problem is a mixed �nite element problem that is solved by a pre-
conditioned conjugate gradient method and the design optimization problem is solved using sequential
separable and convex programming. Several numerical examples are presented that illustrate this new
methodology and the results are compared to results obtained in the context of shape optimization of
�uids. Copyright ? 2003 John Wiley & Sons, Ltd.

1. INTRODUCTION

Shape optimization in �uid mechanics is an active research �eld since several decades. The
desired achievements have for instance been to obtain minimum drag wing pro�les [1–5] and
minimum pressure drop di�users [6]. When striving for a decreased drag or pressure drop,
the feasible design modi�cations have concerned adjusting selected parts of the boundary to
the �uid region. In topology optimization the goal is to not only modify boundary shapes but
also to allow for new boundaries to appear as part of the solution to the optimization problem,
hence allowing for a change in connectedness of the �uid region. This kind of optimization
is well established within mechanics of solids and structures where the amount of work is
abundant, see References [7, 8] for an overview. However, to the authors’ knowledge, the
methodology has not previously been applied to optimal design in �uid mechanics.
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In the present work a direction of research is suggested and initiated where these devel-
opments are done for continuum �uid mechanics. A similar treatment for discrete Poiseuille
�ow networks is given in Reference [9].
Given a predetermined design domain � with certain boundary conditions, the goal is to

determine at what places of � there should be �uid and where there should be non�uid (i.e.
solid), in order to minimize a certain power subject to a given amount of �uid. We consider
creeping �ows of Newtonian �uids, i.e. Stokes �ows, and the objective reduces to minimizing
drag or pressure drop in special cases. This setup should allow for possible new applications
in design of minimum head loss valves, models in bio�uid mechanics, and other applications
in process industries and micro�uidics.
In topology optimization in continuum physics the design parameterization often ends up

with a scaling of some constitutive parameter E while keeping the domain � �xed. One
introduces a design function � which ultimately should be the characteristic function for
the optimal distribution of the medium in which the ‘physical process’ is taking place. The
constitutive parameter E is taken to be a function of � in such a way that intermediate
values of �, i.e. values between zero and one, are feasible but somehow penalized. When the
physical process is represented by linear elasticity, governed by the Cauchy–Navier’s system
of equations, E(�) is the Young’s modulus where the parameterization is such that E(0)≈ 0
to model a hole and E(1)=E0 to model presence of material with modulus E0, cf. Reference
[10]. Almost identically one can parameterize the conductivity in static heat transfer, governed
by the Poisson’s equation.
In this work we are using the generalized Stokes partial di�erential equation [11] to repre-

sent the physical process, i.e. to determine the �ow velocity u and pressure p. This equation
involves the elliptic operator �I −�� in which � is the viscosity and � can be called inverse
permeability. When �=0 one retains Stokes �ow with viscosity � and when �=0 one gets
the Darcy equation that governs porous media �ow with permeability �−1. The scalar � also
appears when solving a subproblem in the time-dependent Navier–Stokes equations [12].
The design parameterization is in this paper performed such that the viscosity is kept con-

stant whereas the permeability �−1 depends on � in such a way that it is very small at non�uid
places and very large to recover Stokes �ow at �uid places. Hence, we are not scaling the
viscosity but rather introducing a kind of penalty factor � on the velocities u such that �(0)
is very large and �(1) is very small. Subsequently we motivate this design parameteriza-
tion by deriving a plane �ow model in Couette �ow. Here, a two-dimensional generalized
Stokes model with �(�)=2:5�=�2 is derived starting from a Stokes three-dimensional model
(with no � present). The parameter � is then half the thickness of the layer in which the
three-dimensional Stokes �ow with constant viscosity � is taking place.
The analyses are then carried out for a general decreasing, convex and continuously di�er-

entiable design parameterization � �→ �(�), and all methodologies are valid in both two and
three dimensions. We prove existence of optimal designs for such general � �→ �(�), and for
the special case of linear � �→ �(�) there exist optimal �:s that are completely discrete-valued,
i.e. the problem is ‘fully penalized’. These are quite unexpected results since it is atypical for
the situation in solids’ topology optimization. For elastic continua the optimal design problem
typically lacks solutions. This can be understood by considering the fact that the objective
function, like structural sti�ness, can be improved on by splitting up solid parts into several
thinner parts (without changing the volume). To cure this, the problem is regularized by ei-
ther expanding the set of feasible designs or by restricting it. The latter can be performed
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by enforcing a constraint on e.g. the perimeter of the domain, and the former means to allow
variable microstructure which is handled by using homogenization. The typical goal of min-
imizing the dissipation power in Stokes �ow does not require �ner scale for the �uid parts:
Replacing one pipe with a prescribed �ow with two pipes of half the width, which together
deliver the same �ow, gives twice as large dissipation power.
Hence the situation is di�erent from the ones in solids. Performing homogenization in

the linear elasticity equations, one retains the same equations. If one introduces rigid balls
with diameter � in �uids in Stokes �ow, however, then the velocity u� converges to zero,
but u�=�2 converges to u which is part of the solution to the Darcy problem (in which the
permeability tensor is related in a speci�c way to the Stokes problem data) [13]. This means,
�rst, that the �ow becomes worse, not better, (in the sense of the objective function) as one
performs the homogenization process, and, secondly, the process converges (after a rescaling
by �2), to a di�erent state equation. Concluding, on the one hand, the homogenization process
is not needed in Stokes �ow topology optimization since existence of optimal designs can
be guaranteed without any regularization, but, on the other hand, this process introduces a
permeability of porous media which we have included in parallel with the viscosity of Stokes
�ows.
The rest of the paper is organized as follows. In Section 2, we present the generalized

Stokes system that is used as a constraint in the design optimization problem. This equation
is derived from a three-dimensional conventional Stokes system under a certain plane �ow
assumption. The section ends with a thorough treatment of how this state problem is solved
numerically. A mixed �nite element formulation is used and the resulting system of equations
is solved e�ciently by a preconditioned conjugate gradient method. Section 3 is devoted to
the design optimization problem, stated as to minimize a power function subject to a �uid vol-
ume constraint, including presentations of the continuum as well as �nite element discretized
formulations. Rigorous mathematical proofs of existence of solutions and convergence of the
�nite element schemes are presented. Regarding the numerical solution of this optimization
problem, we use sequential separable and convex programming, a solution method that is fre-
quently used in the context of topology optimization of solids. In Section 4, several numerical
examples are presented that illustrate this new methodology. The examples are commented
upon and when possible, compared to well-known �uid shape optimization results. The paper
ends with some discussion and conclusions in Section 5.

2. THE STATE PROBLEM

2.1. Continuum mechanical background
We give the needed background from continuum mechanics, following mainly [14].
Consider the �ow of an incompressible, Newtonian �uid with constant viscosity � in the

control volume R⊂R3. The constitutive equation expressing the Cauchy stress T in terms of
pressure �p and �ow velocity �u is then

T = − �pI + 2�D( �u) (1)

where the rate-of-strain tensor D( �u) is given by

D( �u)=
1
2
(∇ �u + (∇ �u)T) (2)
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with ∇ denoting the spatial gradient. The equation of motion reads

�0

(
@ �u
@t
+ (∇ �u) �u

)
=divT + �f (3)

where �0, �f are the reference density and body force, respectively, and @=@t, div the spatial
time derivative and divergence, respectively. Together with the incompressibility condition
div �u=0 the constitutive equation (1) into the equation of motion (3) results in the Navier–
Stokes equations

�0

(
@ �u
@t
+ (∇ �u) �u

)
=div(2�D( �u))−∇ �p+ �f

div �u=0

Using the incompressibility condition and the fact that � is constant, these can be written as

�0

(
@ �u
@t
+ (∇ �u) �u

)
= �� �u −∇ �p+ �f

div �u = 0
(4)

For slow and steady �ow, the convection term (∇ �u) �u is neglected and the spatial time deriva-
tive @ �u=@t vanishes. The Navier–Stokes equations (4) then reduce to the Stokes equations

�� �u = ∇ �p− �f

div �u = 0
(5)

In general we assume that the velocity �u is prescribed to some known function �g on @R. By
integrating the incompressibility condition over R and using the divergence theorem it is easy
to see that the function �g must satisfy the following compatibility condition:∫

@R
�g · n=0 (6)

where n denotes the outward unit normal. Some further continuum mechanical arguments,
needed for an alternative interpretation of the design objective to be treated, are given in the
appendix.

2.2. Variational formulation

Let �C be any velocity function which is zero on the boundary to the control volume, @R.
Multiplying the �rst of (5) by �C and integrating over R one obtains the equation of virtual
power,

�
∫
R

∇ �u · ∇ �C−
∫
R

�p div �C=
∫
R

�f · �C (7)

after having used the Green’s theorem. With the dissipation power bilinear form

A( �u; �C)=�
∫
R

∇ �u · ∇ �C

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:77–107



TOPOLOGY OPTIMIZATION OF FLUIDS IN STOKES FLOW 81

and the functionals

B( �C; �p)= −
∫
R

�p div �C; 〈 �f ; �C〉R=
∫
R

�f · �C

the equation of virtual power (7) can be compactly written as

A( �u; �C) + B( �C; �p)= 〈 �f ; �C〉R (8)

The second of (5) multiplied by any pressure function �q and integrated over R is

B( �u; �q)=0 (9)

Equations (8) and (9) will appear in the weak formulation (10) of the Stokes problem, which
can be posed after some function spaces have been introduced; de�ne

�	=L20(R)=
{
�q∈L2(R)

∣∣∣∣
∫
R

�q=0
}

for pressure functions, and

�V =H 1
0 (R)= { �C∈H 1(R) | �C= 0 on @R}

�U = { �C ∈ H 1(R) | �C= �g on @R}

for velocity functions. Furthermore, we assume that �g ∈H 1=2(@R) and �f ∈L2(R). The weak
form of Stokes problem (5) can be formulated as follows: Find ( �u; �p)∈ �U × �	 such that

A( �u; �C) + B( �C; �p) = 〈 �f ; �C〉R ∀ �C∈ �V

B( �u; �q) = 0 ∀ �q∈ �	
(10)

If R is open, bounded and connected with a Lipschitz continuous boundary @R, the Stokes
problem (10) is uniquely solvable, see for instance Reference [15].

2.3. A plane �ow model

Consider a domain R⊂R3 that is essentially plane, see Figure 1 for an illustration. That is,
R is the cartesian product of a bounded domain �⊂R2 and a short interval [−�; �],

R= {x=(x1; x2; x3)∈R3 | (x1; x2)∈�; −�6x36�}
To start with we assume that � is a small positive constant and introduce the scalar function
� :R → R given by

�(x)= �(x1; x2; x3)=1−
(
x3
�

)2

The boundary function �g and external body �uid force �eld �f are assumed on the following
form

�g = �g

�f = �f
(11)
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Figure 1. Illustration of a plane �ow model.

where g ∈H 1=2(@�) and f ∈L2(�) respectively. For g constant and f = 0, i.e., no body �uid
forces, the velocity solution to the Stokes equations (10) is

�u= �g

The pressure solution can be determined from

∇ �p= − 2�
�2
g

meaning that �p is an a�ne function that is independent of x3. This is in the literature known
as Couette �ow, �ow between two parallel surfaces. Knowing the solution in this special case
and that � is small, we assume that for data as in (11), the solution to Stokes equations (11)
is contained in the closed subset �U‖ × �	‖ ⊂ �U × �	 de�ned by

�U‖ = { �C∈ �U | �C= �C; C∈U}

�	‖ = { �q∈ �	 | �q= 4
5q; q ∈ 	}

where

U = {C∈H 1(�) | C= g on @�}

	= L20(�)=
{
q∈L2(�) |

∫
�
q=0

}

The space of test functions corresponding to �U‖ is

�V‖= { �C∈ �V | �C= �C; C∈V}
where

V =H 1
0 (�)= {C∈H 1(�) | C= 0 on @�}
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The solution that we are looking for is given by the solution to (10) with �U , �V and �	
substituted for �U‖, �V‖ and �	‖: Find ( �u; �p)∈ �U‖ × �	‖ such that

A( �u; �C) + B( �C; �p) = 〈 �f ; �C〉R ∀ �C∈ �V‖

B( �u; �q) = 0 ∀ �q∈ �	‖

Here � is the only component that depends on x3 and straightforward calculation shows that
this problem is equivalent to: Find (u; p)∈U ×	 so that

a�(u; C) + b(C; p) = 〈f ; C〉 ∀C∈V
b(u; q) = 0 ∀q∈	

(12)

with

a�(u; C) =
∫
�
�(�)u · C+ �

∫
�
∇u · ∇C

�(�) =
5�
2�2

b(C; p) = −
∫
�
p div C

〈f ; C〉 =
∫
�
f · C

(13)

Problem (12) is a generalized Stokes problem which for instance appears as a subproblem
when solving the time-dependent Navier–Stokes equations (4), see Reference [12]. The three-
dimensional solution ( �u; �p) can be retained by multiplying u by � and p by 4=5 as indicated
in the de�nitions of �U‖ and �	‖. As for the Stokes equations (10), (12) is uniquely solvable
if only � is open, bounded and connected with a Lipschitz continuous boundary @�.
De�ne the total potential power function J� :H 1(�)→R by

J�(C)= 1
2a�(C; C)− 〈f ; C〉 (14)

and the following closed subset of U :

Udiv = {C∈U | div C=0}
Then the velocity that solves (12) can be found by minimizing the total potential power over
all velocities in Udiv, i.e.

J�(u)= min
C∈Udiv

J�(C)

The stationarity condition for this convex minimization problem is exactly (12). To see this,
relax the constraint div C=0 and form the Lagrangian

L�(C; q)=J�(C) + b(C; q)

and look for a saddle point over all (C; q)∈U ×	. The saddle point (u; p)∈U ×	 then
satis�es (12).
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To summarize, by making suitable assumptions we have reduced a three-dimensional prob-
lem (10) to a two-dimensional problem (12). The dissipated power due to out-of-plane shears
in (10) is in (12) modelled by an absorption term involving the inverse of a permeability
factor, �. A corresponding term involving the permeability tensor appears in Darcy’s law
when homogenizing the Stokes equations, see Reference [13]. A crucial di�erence is that
(12) includes a classical Stokes term modelling the dissipated power due to in-plane shears
that is not present in Darcy’s law. This means that we can here retain the two-dimensional
Stokes equations by putting �=0 (or �=∞).
At this point we allow � to vary in space. The generalized Stokes problem (12) with the

function � given by the second of (13) governs the �ow between two nonplane surfaces
separated by a distance determined by the function �. The interpretation of � above suggests
that � could be used as a design variable in the context of topology optimization since the
permeability is increasing in �. We will discuss this idea in more detail in Section 3 where
an optimization problem is presented in which an optimal density of �uid is sought for.

2.4. Finite element discretization

We now turn our attention to the problem of �nding �nite element approximations to the
functions u and p given by the solution to (12) in the previous section. To this end, we
assume that � is discretized into �nite elements with h denoting a characteristic size of the
largest element. With respect to this mesh, the �nite dimensional approximation spaces 	h ⊂	,
Wh ⊂H 1(�) and, as a consequence, Vh=Wh ∩V are constructed. The exact details on how
these spaces, as well as how the mesh, are constructed are given later on in this section. Let
g̃h ∈Wh be so that gh=Tr(g̃h) is a suitable approximation of the prescribed boundary function
g. The approximation of U is given by

Uh= {Ch ∈Wh | Ch= gh on @�}
The �nite element discretized problem that corresponds to problem (12) reads: Find (uh; ph)∈
Uh ×	h such that

a�(uh; Ch) + b(Ch; ph) = 〈f ; Ch〉 ∀Ch ∈Vh

b(uh; qh) = 0 ∀qh ∈	h

(15)

By putting uh= u0h + g̃h, this problem can be rephrased as to: Find (u0h; ph)∈Vh ×	h such
that

a�(u0h; Ch) + b(Ch; ph) = 〈f ; Ch〉 − a�(g̃h; Ch) ∀Ch ∈Vh

b(u0h; qh) = −b(g̃h; qh) ∀qh ∈	h

(16)

which is a mixed �nite element problem that we intend to solve.
The construction of the space Wh is merely a question of approximation theory, meaning

that the space Wh should be ‘close’ to H 1(�) measured in H 1(�)-norm. The space 	h

should not only have good approximation properties, but it cannot be too big as this would
cause numerical instabilities such as for instance ‘locking’ phenomena and checkerboard-like
tendencies. To assure numerical stability, the spaces Wh and 	h should be constructed so that

sup
0 �=Ch∈Vh

b(Ch; qh)
‖Ch‖1 ¿�‖qh‖0 ∀qh ∈	h (17)
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for some � ¿ 0 independent of h. We have introduced ‖ · ‖1 and ‖ · ‖0 denoting any standard
norm in H 1(�) and L2(�), respectively. Condition (17) is known as the discrete inf-sup
condition or the Ladyszhenskaya–Babu
ska–Brezzi (LBB) condition and is a necessity for the
convergence of (uh; ph) to (u; p). Once (17) is established, one has the following standard
error estimate [16]:

‖uh − u‖1 + ‖ph − p‖06C
(
inf
Ch∈Uh

‖Ch − u‖1 + inf
qh∈	h

‖qh − p‖0
)

(18)

if the boundary velocity is conveniently approximated, or assuming gh= g for convenience.
Hence, if the space 	h approximates 	 well in L2(�)-norm and Uh approximates U well in
H 1(�)-norm, convergence is guaranteed.
In this context, an accurate and stable mixed �nite element method is the Hood–Taylor

method. In this method � is triangulated and the approximation spaces 	h and Wh are cho-
sen as the continuous functions that are piecewise linear and quadratic, respectively. Here we
consider a popular variant of this method that is more suitable for the application we have in
mind. In all our numerical examples, � is a rectangle and hence it is more convenient to use
rectangular �nite elements. Thus the domain is divided into Nx ×Ny identical quadrilateral el-
ements, called P-elements. The pressure space 	h is the space of functions that are continuous
and piecewise bilinear. To determine the velocity space Wh, each P-element is further divided
into 2× 2 elements, resulting in a mesh of 2Nx × 2Ny U -elements. The space Wh consists of
the continuous functions that are bilinear in each U -element. Apart from using quadrilaterals
instead of triangles, the di�erence between the Hood–Taylor method and the method used
here is that piecewise quadratic velocity functions are substituted for piecewise (bi-)linear
velocity functions while at the same time a �ner velocity mesh is used to maintain stability.
The reason for not using piecewise quadratic velocity functions is that the computational e�ort
related to such functions is much higher compared to the resolution in the optimal design.

2.5. Matrix–vector formulations

Let u be the vector of all nodal velocity values for uh, including those on @�. The matrices
C1 and C2 give the vector of nodal displacement values on @�, u1, and the vector of nodal
displacements in the interior of �, u2, respectively;

C1u= u1; C2u= u2

This decomposition is made so that

u=CT1u1 +C
T
2u2 (19)

the matrix [CT1 ;C
T
2 ]
T is invertible, and C1CT1 and C2C

T
2 are identity matrices (with some

dimension). The body forces in the interior are represented by the load vector F which is
work conjugate to u2, so the (virtual) work by the load (per unit time) is FTu2 =FTC2u. The
bilinear form gives a symmetric and positive semide�nite sti�ness matrix K̃� which includes
also the nodes on @�. The matrix B denotes the discretized divergence operator and BT the
discretized gradient operator, and g is the discretized boundary function gh and g̃=CT1g the
vector version of g̃h. The discretized version of J� then becomes

J�(v)= 1
2 v

TK̃�v − FTC2v (20)
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which should be minimized subject to incompressibility and inhomogeneous Dirichlet
conditions,

Bv= 0; C1v= g (21)

By using (19) and CT1v1 = g̃, minimizing (20) subject to constraints (21) can be reduced to
minimizing

J̃ �(v2)= 1
2 v

T
2K�v2 − (F−C2K̃�g̃)Tv2 + 1

2 g̃K̃�g̃ (22)

subject to the constraints

BCT2v2 = − Bg̃ (23)

Here the matrix K�=C2K̃�CT2 is the sti�ness matrix including only the nodes in the interior
of �. A vector u2 solves this quadratic program if and only if the Karush–Kuhn–Tucker
conditions hold, cf. (16),

K�u2 +C2BTp = F−C2K̃�g̃

BCT2u2 = −Bg̃
(24)

where p is the Lagrange multiplier for constraint (23), i.e. the discretized pressure. Since K�

is positive de�nite, one can solve for u2 in the �rst of (24) and then plug this into the second
of (24). One obtains the following equation system in pressure only:

H�p= h� (25)

where

H�=BCT2K
−1
� C2B

T; h�=BCT2K
−1
� (F−C2K̃�g̃) + Bg̃

Having solved for p in (25), u2 can be obtained from the �rst of (24), and then u= g̃+CT2u2.

2.6. Conjugate gradient algorithm in the pressure formulation

Following Reference [17], the system of equations (25) is solved by a conjugate gradient
method. As is well-known, the convergence speed of this iterative method depends highly on
the condition of the system matrix H�. For ��� in all of �, this matrix is well-conditioned
and we experience good convergence. However, for � taking values in the region of interest,
and more importantly if � is oscillating, the convergence is poor and we conclude that the
system needs preconditioning. To this end, a di�culty is that the system matrix is never formed
explicitly and hence applying an algebraic preconditioner, such as an incomplete Cholesky
factorization or an SSOR preconditioner, would be a cumbersome task. A preconditioning
technique based on properties of the underlying partial di�erential equation was introduced by
Cahouet and Chabard [11] and later slightly generalized by Glowinski [12]. As formulated in
these two references, the technique is only applicable when � is a positive constant and we
therefore use the formulation presented in the following.
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To start with, we note that the matrices B, BT and K� are (formally) discretizations of the
operators

B=div

BT =−∇
K� = �I − ��

and thus the system matrix H� may be seen as the discretization of the composed operator

H�= − div(�I − ��)−1∇
The preconditioning operator is here denoted M� and is de�ned by

M−1
� q=’q + �q (26)

where ’q is the solution to the boundary value problem

−div
(
1
�
∇’q

)
= q in �

@’q

@n
= 0 on @�∫

�
’q = 0

(27)

With this choice, assuming � constant and that the involved di�erential operators commute,
we have

H�M−1
� q=−div(�I − ��)−1∇(’q + �q)

=−div(�I − ��)−1∇
(
I − � div

(
1
�
∇
))

’q

=−div(�I − ��)−1
(
I − � div

(
1
�
∇
))

∇’q

=−div(�I − ��)−1(�I − ��)
(
1
�
∇’q

)

=−div
(
1
�
∇’q

)
= q

i.e. a perfect preconditioner. Although these calculations require constant � and periodic bound-
ary conditions, see Reference [11], we have experienced a signi�cant improvement when ap-
plying this preconditioning strategy. For data used in the numerical examples, typically the
number of iterations required for the algorithm to converge is kept below 20.
With M� denoting the discretized preconditioning operator, the overall solution algorithm

can be described as follows. Let p0 be arbitrary and calculate r0 =H�p0−h�, z0 =M−1
� r0 and
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set d0 = − z0. Then for k=0; 1; : : : compute

�k = rk
T
zk =dk

T
H�dk

pk+1 = pk + �kdk

rk+1 = rk + �kH�dk

zk+1 =M−1
� r

k+1

�k = rk+1
T
zk+1=rk

T
zk

dk+1 =−zk+1 + �kdk

The algorithm is terminated when
√
zTz¡ 10−5

√
hT�M

−T
� M−1

� h�.
We end this section with some comments regarding a practical implementation of this

algorithm. The matrix vector multiplication d̃
k
=H�dk is performed in the following �ve steps:

(i) s̃k =BTdk , (ii) sk =C2s̃
k , (iii) solve K�tk = sk , (iv) t̃

k
=CT2 t

k and �nally (v) d̃
k
=Bt̃

k
. Steps

(ii) and (iv) are virtually a problem of cancelling the degrees of freedom corresponding to
the boundary of � and are hence easily dealt with. Moreover, the matrix B is not globally
assembled but is stored as a single constant P-element matrix valid for all P-elements (since
they are all identical). The steps (i) and (v) consist then of transversing all P-elements and
performing matrix vector multiplications on the P-element level and assembling the results.
We note that in step (iii), there is no coupling between the x and y degrees of freedom so
instead we solve the following two smaller systems of equations

�K�tkx = skx
�K�tky = sky

(28)

The matrix �K� is stored in a banded storage format and is LDL
T-factorized only once in the

beginning the algorithm. The solutions tkx and tky are then obtained by forward and backward
substitution, operations that are much cheaper than the factorization of the matrix. Since the
size of �K� is only half the size of K� and since the factorization is performed only once, this
part of the algorithm is e�cient both concerning memory storage and computations. For the
preconditioning, two systems of equations need to be solved. These systems correspond to
the two terms in the de�nition of the preconditioning operator (26), one used for solving the
Poisson-like problem (27) and the other for solving an identity problem. Since these problems
are discretized on the mesh of P-elements, they are cheap to solve compared to solving the
systems (28) which are discretized on the mesh of U -elements.

3. THE DESIGN OPTIMIZATION PROBLEM

We now consider � to be a design variable, or a control function, which a�ects the (inverted)
permeability �, and we write this �(�). An example of such a relation is the second of
(13), where the control function � may be physically interpreted as the distance between two
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surfaces encapsulating �uid. However, if the model was to be generalized to three dimensions,
the only physically reasonable values of � would be �=0, which corresponds to �uid present,
and �=∞, which corresponds to no �uid present. In order to allow for this we therefore
consider the situation where � is a fairly general interpolation function. We would like � to
measure the relative amount of �uid at each point in �, and the idea is to indicate either
nonpresence of �uid by �=0 or presence of �uid when �=1. Hence, the attempt is that the
functions � should be approximate characteristic functions of subsets �f of � occupied by
a �uid. In practice we cannot allow for �=0 or ∞ so we say that �=0 should correspond
to �= ���� and �=1 should correspond to �= ���. The optimization problem, to be stated
more precisely later, is to minimize a power function � over all subsets �f with measure
|�f | less than or equal to some speci�ed value, i.e. minimize � with a constraint on available
�uid volume.

3.1. The objective function

The chosen objective function to minimize in the design problem is going to be the value of
the total potential power evaluated at the solution u to (12), i.e.

�(�)= min
C∈Udiv

J�(�)(C)=J�(�)(u(�)) (29)

where u(�) is the solution to (12) for �= �(�). From the de�nition of J�(u) one can imme-
diately conclude that this objective means to minimize the dissipated power 1

2a�(u; u) in the
�uid plus maximizing the �ow velocities at the applied forces f .
For an alternative interpretation of the meaning of �(�) we form another Lagrangian in the

minimization of C �→J�(C) where now the other constraint C= g on @� is relaxed,

L�(C;�)=J�(C)− 〈�; C− g〉@�
Here we have written 〈·; ·〉@� for the duality pairing between H−1=2(@�) and H 1=2(@�).
Let Wdiv = {C∈H 1(�) | div C=0} and look for a saddle point (u; 	)∈Wdiv×H−1=2(@�) one
obtains u= g on @� and

a�(u; C)− 〈f ; C〉 − 〈	; C〉@� =0 ∀C∈Wdiv (30)

Choosing C= u in (30) and plugging the resulting expression into (14) one obtains

J�(u)= 1
2(〈	; g〉@� − 〈f ; u〉)

or when writing it as a function of �,

�(�)=J�(�)(u(�))= 1
2(〈	(�); g〉@� − 〈f ; u(�)〉) (31)

Hence the design goal is to minimize 〈	(�); g〉@� − 〈f ; u(�)〉, which can be described as a
combination of minimizing the forces on the boundary 	 required to propel the �uid to obtain
the �xed velocities g on the boundary, and maximizing �ow velocities u at the areas where
�xed forces f are applied.
Consider the common special case f = 0. Then, again from the original de�nition of J�(u),

one sees that this objective means to minimize the dissipated power in the �uid. This can
also be described as minimizing the average pressure drop under the additional assumption
�g= �gn, see the appendix.
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3.2. Statement of the optimization problem
Let the set of admissible controls be

H=
{
�∈L∞(�)

∣∣∣∣06�61 a:e: in �;
∫
�
�6
|�|

}

with 
 being the prescribed volume fraction, a constant between 0 and 1. Furthermore, let
� : [0; 1]→ [�; ��] be a decreasing, convex and continuously di�erentiable interpolation function.
We consider the following three optimization problems:

min
(�;u)∈H×Udiv

J�(�)(u)

min
�∈H

�(�)

min
u∈Udiv

 (u)

(32)

where  is de�ned by
 (u)= min

�∈H
J�(�)(u) (33)

It can be shown that these three problems are equivalent in the sense that if a pair (�∗; u∗)
is a solution to any one of the problems,‡ it is also a solution to the other two. It follows
that if one of the problems is well-posed, i.e. the set of solutions is nonempty, then the other
two are also well-posed. Regarding the question of existence of solutions, we may therefore
restrict ourselves to examining only one of the three problems.

Theorem 3.1
The �rst of (32) is well-posed.

Proof
Let {(�n; un)}∞n=1⊂H×Udiv be a minimizing sequence of J�. Since H is weakly∗ compact,
there is an element �∗ ∈H and a subsequence, denoted {�m}∞m=1, so that �m →�∗ weakly∗

in L∞(�). Furthermore, since � is positive and bounded from above and below, the bilinear
form a� in (14) is H 1(�)-elliptic, and it follows that {un}∞n=1⊂H 1(�) is relatively weakly
compact. Since Udiv⊂H 1(�) is weakly closed, there is an element u∗ ∈Udiv so that, again for
a subsequence {um}∞m=1, um → u∗ weakly in H 1(�). Naturally these two subsequences can be
chosen as a subsequence of the originally minimizing sequence and, in addition, they can be
chosen so that um → u∗ strongly in L2(�) because of the compact inclusion H 1(�)⊂L2(�).
We now show that J� is lower semicontinuous with respect to this topology.
We only show lower semicontinuity of the term that depends on �, treatment of the other

terms are classical and can be found in e.g. [18]. We have

∫
�
�(�m)um · um −

∫
�
�(�∗)u∗ · u∗

=
∫
�
�(�m)(um · um − u∗ · u∗) +

∫
�
(�(�m)− �(�∗))u∗ · u∗

‡To avoid confusion, (�∗; u∗) is termed a solution to the second of (32) if (i) u∗= u(�∗) in (29) and if (ii) �∗
solution to the second of (32). An analogous de�nition is assumed for the third of (32).

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:77–107



TOPOLOGY OPTIMIZATION OF FLUIDS IN STOKES FLOW 91

where the two terms on the right hand side can be treated individually as follows. The �rst
term tends to zero since

∣∣∣∣
∫
�
�(�m)(um · um − u∗ · u∗)

∣∣∣∣6
∫
�
|�(�m)(um · um − u∗ · u∗)|

6C1
∫
�
|um · um − u∗ · u∗|=C1

∫
�
|(um − u∗) · (um + u∗)|

6C1‖um − u∗‖0‖um + u∗‖06C2‖um − u∗‖0

and um → u∗ in L2(�). Since u∗ · u∗¿0 pointwise, the second term can be estimated as follows∫
�
(�(�m)− �(�∗))u∗ · u∗¿

∫
�
(�m − �∗)�′(�∗)u∗ · u∗

where we have used that � is convex and continuously di�erentiable. Since �′ is bounded
from above and below, �′(�∗)u∗ · u∗ ∈L1(�) and the right hand side tends to zero because of
weak∗ convergence of �m to �∗. This shows that J� is lower semicontinuous.
It now follows that for any (�; u)∈H×Udiv

J�(�∗)(u∗)6 lim inf
m→∞ J�(�m)(um)6J�(�)(u)

i.e. (�∗; u∗)∈H×Udiv solves the �rst of (32).
The second and third of (32) are nested formulations of the �rst, which is formulated as a

simultaneous analysis and design problem. The second of (32) is the problem for which the
objective function is examined in detail in Section 3.1 and that is solved in practice. Now
consider the special case of linear interpolation, i.e. �(�)= ��+(�− ��)�, and, for any u∈Udiv,
let �(u)⊂� be a set with |�(u)|= 
|�| that ful�ls

x∈�(u)⇒ u(x) · u(x)¿u(y) · u(y); ∀y∈�\�(u)
It is easy to see that such a set exists and that a solution to the inner minimization problem
in the de�nition of  (33) is given by �(u)= ��(u), i.e. the characteristic function of the set
�(u). In other words, when the interpolation is linear we can always �nd an optimal design
function �∗ in the set

H̃=
{
�∈L∞(�)

∣∣∣∣�(x)∈{0; 1} a:e: in �;
∫
�
�6
|�|

}

Since H̃⊂H, we have proved the following

Corollary 3.1
The �rst of (32) is well-posed with H substituted for H̃.

Theorem 3.1 and Corollary 3.1 state indirectly that there is no need for a regularization of
the optimization problem, even if � is only allowed to take values 0 or 1. This is a rather
unusual situation in topology optimization of continua and is physically a consequence of how
power is dissipated in Stokes �ow, something that is commented upon throughout Section 4.
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Figure 2. Quadrilateral �nite elements used for the continuous bilinear approximation of velocity and
pressure and piecewise constant approximation of control.

3.3. Finite element discretization of the optimization problem

We have supposed that � is partitioned into m=4Nx ×Ny mutually disjoint U -elements �i,
such that �i ⊂� and

⋃m
i=1

��i= ��. For each partition, h denotes a characteristic size of the
(largest) element and Lh the space of U -elementwise constant functions on �. We approximate
the control function � as U -elementwise constant, which means that the discretized controls
will be restricted to belong to the set Hh=H∩Lh. The picture in Figure 2 shows the resulting
quadrilateral �nite elements used for the approximation of velocity, pressure and control.
The operator Ph is de�ned as the U -elementwise constant interpolation

Ph�=
m∑
i=1

�i��i

where �i is the integral mean of � over �i, i.e.

�i=
1

|�i|
∫
�i

�

It can be veri�ed that Ph maps H onto Hh and that Ph� converges to � in L2(�)-norm for
any �∈H:§

We pose two very weak assumptions on the discretization of the state problem. Standard
interpolation estimates, see Reference [19], together with the density of smooth functions give
that we can assume that the discretized functions are dense in the exact ones:

(I) ∀(u; p)∈U ×	: lim
h→0

inf
Ch∈Uh

‖u − Ch‖1 = lim
h→0

inf
qh∈	h

‖p− qh‖0 = 0

Moreover, we pose the following closedness property:

(II) uh ∈Uh; uh → u weakly in H 1(�)⇒ u∈U
which follows immediately if e.g. Uh ⊂U .
The FE-discretized optimization problem can, in one of its equivalent forms, be stated as

min
(�h;uh)∈Hh×Udiv; h

J�(�h)(uh) (34)

§The convergence refers to the sequence obtained when letting h→ 0 from above, which is often implicitly
understood in this text.
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in which Udiv; h is the set of functions in Uh for which the discretized incompressibility
condition, second of (15), holds.
We have the following density and closedness lemmas for the discretization of Udiv:

Lemma 3.1
Suppose that (I) and the LBB-condition (17) hold true, and let u be any function in Udiv.
Then there exist functions uh ∈Udiv; h such that uh → u strongly in H 1(�).

Proof
Let u be any function in Udiv. Project u onto the set Udiv; h to obtain uh. If the projection is
performed in the sense of the power norm

√
a�(·; ·) for any �xed �, then uh is governed by

(15) with 〈f ; ·〉= a�(u; ·). Similarly we can project u on Udiv to get u itself, so u is governed
by (12) with 〈f ; ·〉= a�(u; ·). Hence, having assumed (17), the error estimate (18) applies.
Therefore ‖uh − u‖1 converges to zero since we have also assumed (I).
Lemma 3.2
Suppose that (I) and (II) hold true, and let uh ∈Udiv; h be functions such that uh → u weakly
in H 1(�). Then u belongs to Udiv.

Proof
By (II), u∈U , so it remains to show only b(u; q)=0 in which q is an arbitrary choice
from 	.
By (I) one can �nd qh ∈	h such that qh → q strongly in L2(�). This together with the

weak convergence of uh ensure

b(u; q)= lim
h→0

b(uh; q) + lim
h→0

b(uh; qh − q)= lim
h→0

b(uh; qh)

It holds that b(uh; qh)=0 since uh ∈Udiv; h, and therefore b(u; q)=0.

Now we are in a position to prove convergence of the �nite element scheme:

Theorem 3.2
Suppose that (I), (II) and the LBB-condition (17) hold true, and let {(�∗

h ; u
∗
h )} be a sequence

of solutions to (34) as h→ 0. Then there exists an element (�∗; u∗) which is feasible in the
�rst of (32), and there is a subsequence, again denoted by {(�∗

h ; u
∗
h )}, such that

�∗
h →�∗ weakly∗ in L∞(�)

u∗h → u∗ weakly in H 1(�)

Moreover, any such limit (�∗; u∗) solves the �rst of (32).

Proof
Since the functional J�(�∗h )(·) is uniformly elliptic and the sets Hh are uniformly bounded with
respect to h, it follows that the sequence {u∗h} is bounded in H 1(�) and {�∗

h} is bounded in
L∞(�). Hence we can extract a subsequence, again denoted {(�∗

h ; u
∗
h )}, such that �∗

h converges
weakly∗ in L∞(�) to a limit �∗ and u∗h converges weakly in H

1(�) (and strongly in L2(�))
to a limit u∗. By Lemma 3.2, u∗ ∈Udiv, and since Hh ⊂H where H is weakly∗ closed,
�∗ ∈H, and therefore (�∗; u∗) is feasible in the �rst of (32).
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Pick any feasible pair (�; u) in the �rst of (32). By Lemma 3.1 there exists uh ∈Udiv; h such
that uh converges to u strongly in H 1(�). Moreover, (Ph�; uh) is feasible in (34), so

J�(�∗h )(u
∗
h )6J�(Ph�)(uh) (35)

By the arguments on lower semicontinuity in Theorem 3.1, lim inf J�(�∗h )(u
∗
h ) is bounded

below by J�(�∗)(u∗), and J�(Ph�)(uh) converges to J�(�)(u) by the strong convergence of Ph�
in L2(�) and uh in H 1(�), cf. Reference [20]. Therefore, taking the limit of (35) results in

J�(�∗)(u∗)6 lim inf
h→0

J�(�∗h )(u
∗
h )6 lim

h→0
J�(Ph�)(uh)=J�(�)(u)

which means that (�∗; u∗) is optimal in the �rst of (32).

The result establishes the convergence of optimal control functions �∗
h , obtained by solving

the �nite element discretized optimization problem, to optimal control functions �∗ in the
original problem statement. The convergence is only in a weak∗ sense, so this fact alone
does not rule out the existence of checkerboard patterns in the �elds �∗

h . If such patterns
appear, however, it is clear how to interpret them, namely as a convergence to intermediate
‘gray’ control values. As the choice of � �→ �(�) is such that the �nal controls will be almost
completely ‘black-white’, however, checkerboards will not appear. In fact, it follows from
Corollary 3.2 in [20] that �∗

h converges strongly to �∗ in Lp(�b)-norm, where �b is the
subset of � where �∗ equals 0 or 1, and p∈ [1;∞) is arbitrary.

3.4. Sequential separable and convex programming

As a base for a numerical solution procedure, we use the nested problem formulation given
by the second of (32). In this section we present the discretized version of this problem and
how it is solved.
Let � be the vector of U -elementwise constant values of �h, and u2(�) and p(�) the vectors

that solve (24) for this �h. Furthermore, we set u(�)= g̃ + CT2u2(�) and emphasise that K̃�

depends on � by denoting it K̃(�), i.e.

K̃(�)=
m∑
i=1
(�(�i)K�

i + �K�
i ) (36)

where K�
i and K

�
i are element matrices arising from the terms in the �rst of (13). The discrete

version of the objective function � given by (29) can now be written as

�(�)= 1
2(u(�)

T(K̃(�)g̃−CT2F) + p(�)TBg̃) (37)

This expression can be veri�ed by expanding the individual terms in the right hand side of
(37), using the expression for u(�) above and Equation (24), and comparing this expansion
with the right hand side of (22) with v2 = u2(�). The reason for not using (22) with v2 = u2(�)
as an expression for the objective function is that (37) is more convenient when considering
an implementation. The vectors K̃(�)g̃ − CT2F and Bg̃ are (virtually) the right hand sides
of (24) and are needed for obtaining u(�) and p(�) in the �rst place. The objective value
is then simply obtained by performing two scalar products followed by an addition and a
multiplication.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:77–107



TOPOLOGY OPTIMIZATION OF FLUIDS IN STOKES FLOW 95

From a mathematical programming point of view, the discrete version of the second of
(32) is conveniently written as 


min
�

�(�)

s:t: eT�6
|�|
06�61

in which e is the vector containing the U -element areas. This problem is solved by means of
sequential separable and convex programming. In iteration k and for a design suggestion �k ,
the vectors u(�k) and p(�k) are obtained and the following separable and convex subproblem
is formed: 


min
�

rk +
∑m

i=1
qk
i

�i − lki
s:t: eT�6
|�|

�k6�6 ��k

(38)

where �i are the element values of �. The expression for the objective function in (38)
is known as an MMA-expansion and was introduced by Svanberg [21]. The parameters lki ,
�k and ��k are parameters that are dynamically updated between iterations according to the
scheme in [21]. The parameters rk and the qk

i are then chosen so that function values and �rst
order derivatives are correct in the current iteration point �k . For this, a sensitivity analysis is
required for the objective function. We set �(�)= �(�h) and note that the objective function
is (20) with v= u(�), i.e.,

�(�)= J�(�)(u(�))= min
v

J�(�)(v) (39)

in which the minimization is performed subject to constraints (21). The function � can
obviously be written as pointwise maxima of an indexed family of functions, and so we can
apply theorems on generalized gradients for such functions. In fact, it follows from Theorem
2.8.6 in Reference [22] that

@�(�)
@�i

=
1
2
u(�)T

@K̃(�)
@�i

u(�)

since the minimizing vector u(�) in (39) is always unique. Using (36) this becomes

@�(�)
@�i

=
1
2
�′(�i)u(�)TK�

i u(�)

Whence �′(�i)60 and u(�)TK�
i u(�)¿0, it follows that one will improve the objective, or at

least not worsen it, when one adds �uid to any part of �. Note that since all U -elements are
identical, only two representatives of the element matrices need to be stored and the calculation
of sensitivities as well as assembly of the global sti�ness matrix are cheap operations. When
(38) is completely determined, it is (due to separability, convexity and only one constraint)
solved cheaply using a dual method and the solution is taken as a new design suggestion
�k+1. This iterative procedure is stopped when the relative di�erence between two successive
objective values is less than 10−5 twice in a row.
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Figure 3. The interpolation function (40) plotted for q=0:01, 0.1, 1 and 10.

4. NUMERICAL EXAMPLES

4.1. Preliminaries

We begin this section by discussing the choice of interpolation function � �→ �(�). Since the
goal is for � to only take values 0 or 1, the idea is to choose � in such a way that intermediate
values of � are suppressed. From this point of view, it is interesting to note that the discussion
leading to Corollary 3.1 indicates that � should be linear in order to end up with a discrete-
valued solution. However, a linear interpolation function would impose a too severe penalty
on the design and we would often end up with locally (and non-globally) optimal solutions.
Therefore we use the following convex and q-parameterized interpolation function:

�q(�)= ��+ (�− ��)�
1 + q
�+ q

(40)

The parameter q¿0 is a penalty parameter that is used to control the level of ‘gray’ in the
optimal design. This function is depicted in Figure 3 for four di�erent values of q and param-
eter values that are used in all numerical examples, �=1, �=2:5�=1002 and ��=2:5�=0:012.
It is easily deduced that when q is large, the interpolation is close to linear which likely
would encourage a discrete-valued optimal solution.
The pro�le of nonzero prescribed �ow velocities on the boundary is always (except for in

the rugby ball example in Section 4.4) parabolic shaped and the magnitude of the velocity
can be written g= �g(1 − (2t=l)2), parameterized in t ∈ [−l=2; l=2]. Here l is the length of
the boundary part where the �ow velocity is prescribed and �g is the magnitude of the �ow
velocity at the centre of this boundary part. The direction of the �ow and the value of the
parameter l will be found from �gures and the value of the parameter �g will be given in the
text.
In order to obtain a su�ciently discrete-valued solution, a penalty parameter value of q=0:1

is used. Because of nonconvexity, we have on occasion experienced problems with locally
optimal solutions when solving the problems directly using these parameter values. For some
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Figure 4. Design domain for the di�user example. The outlet is centred on the right side of the domain.

of the examples we therefore consider a two-step solution procedure where the problem is
initially solved with a small penalty value of q=0:01. The obtained solution is used as
an initial guess for the problem with a penalty value of q=0:1. This is done with all other
parameters unchanged. The main idea is to generate a clever initial guess for the ill-conditioned
(in terms of convexity) optimization problem by initially solving a well-conditioned one.
Whether or not this strategy is applied, we have always started from a constant initial guess
�= 
, where 
 is the prescribed volume fraction, and the iteration numbers given in the tables
are the total number of iterations needed to obtain the optimal solution starting from this
constant design.
Finally, in the grey scale pictures showing the optimal results, black corresponds to a design

value of �=0 and white a value of �=1.

4.2. A di�user

The �rst two examples are engineering applications commonly found in the �uid mechanics
literature. Although these examples may be more interesting when considering more com-
plicated �uid models, they are here used to give a �rst illustration and veri�cation of the
methodology presented in this paper. The �rst example is the di�user that is depicted in
Figure 4. The prescribed volume fraction is 
=0:5 and the maximum �ow velocity is �g=1
at the inlet on the left and �g=3 at the outlet on the right. The problem is solved directly for
two mesh discretizations, a coarse and a �ne mesh, and the solutions are shown in Figure 5.
Apart from illustrating mesh independence, the solutions can be compared with the ones ob-
tained by C� abuk and Modi [6]. In Reference [6], a similar di�user problem is solved using
shape optimization in Navier–Stokes equations for low Reynolds numbers. A major di�erence
from here is that the out�ow condition (actually corresponding to the in�ow condition on the
left side of the domain in Figure 4) is of Neumann type, which, together with some other
di�erences, make the solutions look rather di�erent from a global perspective. However, when
comparing the boundary shapes closer to the side where a Dirichlet parabolic �ow pro�le is
prescribed, they are similar. We believe that the solutions here would be di�erent if one
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Figure 5. Optimal di�user on a coarse and a �ne �nite element mesh.

Figure 6. Design domain for the pipe bend example.

includes the possibility of combining the parabolic �ow pro�le conditions on the boundary
with for instance constant �ow pro�les or Neumann boundary conditions.

4.3. A pipe bend

We follow up the previous example with a pipe bend shown in Figure 6. Here 
=0:08�
and �g=1 for the prescribed in�ow and out�ow. The prescribed volume fraction is chosen
so that the optimal solution has the same volume as a quarter torus of inner radius 0.7 and
outer radius 0.9 that exactly �ts to the inlet and outlet. The solution strategy and other input
data are the same as for the di�user example and the solutions are shown in Figure 7. As
can be seen, the optimal solution is a straight pipe connecting the inlet and outlet and not,
as pipe bends in �uid mechanics literature mostly are, torus shaped, which can be explained
as follows. If a prescribed amount of �uid is to be transported in a pipe, the shears in the
�uid are large when the pipe is thin and, conversely, small when the pipe is wide. Since the
dissipated power in Stokes �ow is due to shears only, an optimal �ow pipe is preferably short
and wide. If for instance a �ow model that allows for separation of the boundary layer would
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Figure 7. Optimal pipe bend on a coarse and a �ne �nite element mesh.

Table I. Computational data for the di�user.

Number of U -elements Number of iterations Objective value

50× 50 29 30.59
100× 100 33 30.46

Table II. Computational data for the pipe bend.

Number of U -elements Number of iterations Objective value

50× 50 64 10.01
100× 100 85 9.76

have been used, the solutions in Figure 7 would be rather poor and a more torus shaped
solution would probably be more advantageous. Computational data for the di�user and the
pipe bend can be found in Tables I and II, respectively.

4.4. A rugby ball

The design domain for the third numerical example is shown in Figure 8 and is for the
computations discretized into 100× 100 U -elements. The prescribed velocity on the boundary
is constant, directed upwards and of magnitude 1. A small portion of the design domain
close to the boundary is prescribed �uid and the remainder of the domain is subject to the
optimization. The problem is solved for three values of 
, and the results are shown in
Figure 9. It is seen that the optimal shape is insensitive to the prescribed volume fraction 

and reminds of that of a rugby ball. A very similar example has been treated theoretically in
the context of shape optimization in Stokes �ow by Pironneau [3, 4]. There it is for instance
concluded that the wedge at the front and back of the optimal shape is necessarily of angle 90◦,
which seems to agree reasonably well with the obtained numerical results. From a numerical
viewpoint, this problem is well-conditioned and little or no precautionary measures need to be
taken. The solution procedure presented in Section 4.1 is used here and data for this example
can be found in Table III.
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Figure 8. Design domain for the rugby ball example.

Figure 9. Optimal rugby balls for 
=0:8, 0.9 and 0.95.

4.5. A double pipe

In Figure 10, a parameterized design domain is shown. The maximum velocities at the inlets
and outlets are de�ned by �g=1 and the prescribed volume fraction is chosen as 
= 1

3 . The
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Table III. Computational data for the rugby ball.

Volume fraction 
 Number of iterations Objective value

0.8 47 31.75
0.9 33 14.07
0.95 29 8.35

Figure 10. Design domain for the double pipe example.

problem is solved for 
=1 and 
=1:5, for which the design domain is discretized into
100× 100 and 150× 100 U -elements, respectively. These choices of the width-to-height ratio

 result in two solutions that are topologically di�erent and shown in Figure 11. As for the
pipe bend, the channels that transport the �uid should be short and wide and for a su�ciently
large 
, it is advantageous to join the two pipes appearing in the upper solution to form the
solution below. In short, there is a trade-o� between transporting �uid the shortest way and to
transport the �uid partly along a wide pipe in the centre of the design domain. Numerically,
this problem is tricky to solve, and we �nd it necessary to use the solution procedure in
Section 4.1 to avoid a (non-global) local optimum.
The solution at the top in Figure 11 can ideally be seen as two straight pipes that contain

Stokes �uid. For such a case it is possible to compute the dissipated power analytically,
a value that is equal to 32. When inspecting Table IV, which contains computational data
for this example, the reader may note that the objective value for the solution at the top in
Figure 11 is rather small compared to the analytically obtained dissipation value. Apart from
the discretization error, there are two reasons to why this value is low. First, one may note
that there is a layer of grey elements at the boundary of the pipes that allows for a decrease
in the dissipated power since the ‘e�ective’ width of the pipes is larger than 1

6 . If needed,
this e�ect is partly cured by choosing a larger q in (40). Secondly, some power is dissipated
in the non�uid regions because of a not-large-enough choice of ��. From experiments, we
conclude that this e�ect may lead to a reduction in the dissipated power with up to (and
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Figure 11. Optimal double pipes for 
=1 and 1.5, respectively.

Table IV. Computational data for the double pipe.

Length of domain 
 Number of iterations Objective value

1 61 25.67
1.5 236 27.64

perhaps more than) 10%. To see if this has an e�ect on the optimal design, we reran the two
examples in Figure 11 with values �=2:5�=10002 and ��=2:5�=0:0012 but obtained virtually
identical results. It is believed that the optimal design is rather insensitive to the choice of ��
even though the dissipated power value may deviate quite a lot from the ‘true’ value.

4.6. An example with a force term

We end this section with an example that includes a body �uid force term. Figure 12 shows
the design domain which is discretized into 100× 100 U -elements. The volume fraction is
chosen 
=0:25 and the prescribed �ows on the boundary are of a magnitude de�ned by �g=1.
We have solved the problem for three horizontally directed body forces and the solutions are
shown in Figure 13. For this example we also show the optimal designs including �ow
velocity streamlines. For the solution shown at the top, the force is directed to the left and
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Figure 12. Design domain for the example with a force term. The circular patch on which the surface
force density is de�ned is centred with respect to the width of the domain.

the optimal solution is a pipe that due to the force is connected to a roundabout in which
the �uid �ows in the clockwise direction. For a force of a certain magnitude directed to the
right, the optimal design is a pipe that is shaped so that the force propels the �uid along the
pipe, a situation that is illustrated by the solution shown in the middle. For this design, the
incompressibility condition prevents the �uid of having a much larger velocity at the middle
of the pipe than at the inlet and outlet. Consequently, a su�ciently large force to the right can
be utilized more appropriately for a design shown at the bottom of the �gure. Here the pipe
is combined with a roundabout in which the �uid �ows in the counter clockwise direction.
The streamlines to the right show that the �uid velocity is approximately constant along the
pipe for the design in the middle while it is higher by the applied force for the design at
the bottom. Finally, we note that to obtain a successful result we had to apply the solution
procedure presented in Section 4.1. Computational data for this example is found in Table V.

5. DISCUSSION AND CONCLUSIONS

A methodology for performing topology optimization of �uids in Stokes �ow is presented
in this paper. A generalized Stokes problem is derived from a plane �ow assumption that
proves to be suitable for introducing the design parameterization. Physically, the design can
be seen as to control the permeability of the �uid while the viscosity is kept constant. The
discretized state problem is a mixed �nite element problem that is solved in the �uid pressure
by a preconditioned conjugate gradient method. A preconditioner previously used in �uid
mechanics applications is here slightly reformulated to handle ill-conditioning due to design
oscillations, an approach that signi�cantly improves the e�ciency of the solution procedure.
The optimization problem is formulated as to minimize the total potential power, which for no
body �uid forces present is reduced to minimize the dissipated power in the �uid. It is shown
that the optimization problem is well-posed, even if the design is required to be discrete-
valued, and hence no regularization is needed. Furthermore, the �nite element discretized
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Figure 13. Optimal results for the example with a force term. The surface force density is −1125, 562.5
and 1687.5 in the direction of the arrow in Figure 12, respectively.

solutions are shown to converge to the exact ones as the mesh is in�nitely re�ned. These
results indicate that the numerical solutions are not prone to numerical instabilities, such
as mesh-dependence or checkerboards, something that is also illustrated by the numerical
examples. The discretized optimization problem is solved by sequential separable and convex
programming, or more speci�cally, by MMA (the method of moving asymptotes). Several
numerical examples in two dimensions are presented and compared to well-known results
obtained in shape optimization of �uids.
Since the use of topology optimization methodologies in �uid mechanics seems to be new,

it is not out of place to speculate about applications. First, constructions, or biological systems,
involving quite slow �ow on a quite small scale imply small Reynolds numbers, so the Stokes
�ow assumption is reasonable. One could therefore try to �nd applications in (integrated)
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Table V. Computational data for the example with a force term. The direction of the surface
force density is the one given in Figure 12.

Surface force density Number of iterations Objective value

−1125 229 2.19
562.5 66 −1:21
1687.5 69 −22:53

�uid circuits where the �uid paths measure about, say, less than 1 mm in width, and within
biomedicine and bio�uid mechanics. Second, for slow �ows of quite viscous �uids such as
oil, the typical length need not be very small for the Reynolds number to be small, so one
could consider optimal design of �uid paths in valves.
In several of these applications the �uid device should be able to handle more than one

single �ow scenario. Therefore the methodology should be extended to cope with multiple
boundary conditions.¶ In this paper, one should note that the properties of the optimization
problem is a reason for obtaining nice mathematical results and also a�ects the numerical
solution strategy. If an application requires usage of another objective, i.e. other than the total
potential power, additional or alternative measures may need to be taken for the methodology
to work satisfactory.
For some other applications that one can think of it will be necessary to include more

sophisticated state equations in order to be able to govern realistic �ows. One could imagine
optimal conceptual design of air �ow channels in vehicles, such as aircondition design for
cars, as well as design of submerged bridge pillars for minimum environmental impact on
watercourse �ows. In such cases the Stokes model is insu�cient, and one could instead try to
perform optimization with e.g. the Euler equations governing inviscid �ows. Then, however,
it is an open question how to perform the design parameterization. Also, performing topology
optimization with the Navier–Stokes equations would certainly be very desirable, but very
di�cult due to the careful resolution that is needed close to the unknown boundaries.

APPENDIX A: INTERPRETATION OF �(�) AS AVERAGE PRESSURE DROP

We return to the three-dimensional continuum mechanical description initiated in Section 2.1,
and consider cases when �f = 0 and �g= �gn.
We start by making the following observation. Denoting the surface traction by s(n), on

@R it holds that

s(n) · �u= − �p( �g · n) + 2�D( �u)n · �u
due to s(n)=Tn (Cauchy’s theorem) and the constitutive equation (1). Using (2) this can be
rewritten as

s(n) · �u= − �p( �g · n) + �(∇ �u) �u · n+ �(∇ �u)n · �u

¶This is analogous to multiple loads in solid mechanics and should not provide any principal complications.
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and in particular, when �g= �gn and neglecting the convection terms,

s(n) · �g ≈ −pg (A1)

For the three-dimensional case we can identify the multiplier 	(�) with the surface traction
s(n), so by (A1) and (31) one gets that

�(�) ≈ −1
2

∫
@R

pg

so the objective is to maximize
∫
@R pg. De�ne @Rin as the part of @R where �g¡0 and @Rout

the part of @R where �g¿0, and then de�ne the average pressures

�pin =

∫
@Rin

gp∫
@Rin

�g
; �pout =

∫
@Rout

gp∫
@Rout

�g

From the compatibility condition (6) one has

−
∫
@Rin

�g=
∫
@Rout

�g ¿ 0

so

�(�)≈−1
2

∫
@R

pg=
1
2

(∫
@Rin

gp∫
@Rin

�g
−
∫
@Rout

gp∫
@Rout

�g

)∫
@Rout

�g

=
1
2
( �pin − �pout)

∫
@Rout

�g

Therefore, since the �ow
∫
@Rout

�g through the control volume is given, the design goal in this
common special case is to

minimize ( �pin − �pout)

In conclusion, neglecting similar nonlinear terms as when deriving Stokes equations from
Navier–Stokes equations, and assuming �g= �gn, �f = 0, the chosen design objective (31) means
to minimize the average pressure drop.
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